MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and Represses Pluripotency in Human Embryonic Stem Cells

نویسندگان

  • Na Xu
  • Thales Papagiannakopoulos
  • Guangjin Pan
  • James A. Thomson
  • Kenneth S. Kosik
چکیده

MicroRNAs (miRNAs) are posttranscriptional modulators of gene expression and play an important role in many developmental processes. We report here that expression of microRNA-145 (miR-145) is low in self-renewing human embryonic stem cells (hESCs) but highly upregulated during differentiation. We identify the pluripotency factors OCT4, SOX2, and KLF4 as direct targets of miR-145 and show that endogenous miR-145 represses the 3' untranslated regions of OCT4, SOX2, and KLF4. Increased miR-145 expression inhibits hESC self-renewal, represses expression of pluripotency genes, and induces lineage-restricted differentiation. Loss of miR-145 impairs differentiation and elevates OCT4, SOX2, and KLF4. Furthermore, we find that the miR-145 promoter is bound and repressed by OCT4 in hESCs. This work reveals a direct link between the core reprogramming factors and miR-145 and uncovers a double-negative feedback loop involving OCT4, SOX2, KLF4, and miR-145.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

متن کامل

Oct4-Induced Pluripotency in Adult Neural Stem Cells

The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-spe...

متن کامل

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

Abate and Switch: miR-145 in Stem Cell Differentiation

MicroRNAs have been implicated as regulators of embryonic stem (ES) cell self-renewal and pluripotency. In this issue, Xu et al. (2009) demonstrate that miR-145 facilitates ES cell differentiation by repressing the core pluripotency factors OCT4, SOX2, and KLF4, thereby silencing the self-renewal program.

متن کامل

Embryonic stem cell markers expression in cancers.

The transcription factors Oct4 and Sox2 are highly expressed in embryonic stem (ES) cells. In conjunction with Klf4 and c-Myc, their over-expression can induce pluripotency in both mouse and human somatic cells, indicating that these factors are key regulators of the signaling network necessary for ES cell pluripotency. Self-renewal is a hallmark of stem cells and cancer and stemness programmin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2009